Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 1707
  • Home
  • Print this page
  • Email this page
Year : 2020  |  Volume : 6  |  Issue : 1  |  Page : 44-52

Simulating patient matching to clinical trials using a property rights blockchain

1 Pfizer Digital, Pfizer Inc., Cambridge, Massachusetts, USA
2 Bitmark Inc., Teipei, Taiwan
3 Chief Development Office, Antidote Technologies Ltd., Indianapolis, Indiana, USA

Correspondence Address:
Jay Bergeron
Pfizer, Inc., 600 Main St, Cambridge, Massachusetts 02142
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/digm.digm_30_19

Rights and Permissions

Objective: Biomedical data processing generally requires the secure stepwise transfer of sensitive personal information across multiple parties. Mediating such operations using distributed secure digital ledgers, i.e., blockchains, is investigated in this article. Materials and Methods: The bitmark property rights blockchain was used to simulate the process of assessing individuals for enrollment to specific clinical trials. In the scenario presented, a sponsor publishes a recruitment call for a clinical trial and patients signal their willingness to participate in the trial through blockchain transactions. The blockchain creates and maintains digital references of the medical data assets of prospective study participants as well as digital property certificates for assigning access rights to corresponding medical data assets. Trial matching services review the patient blockchain records and recommend study participants that are likely to meet the enrollment criteria of recruiting clinical trials. Digital certificates assign transient access rights to the data assets of the prospective study participants. These certificates are transferred to pertinent matching services and sponsors, allowing these organizations to examine the candidacy of each prospective study participant. Results: The trial matching simulation demonstrates that property rights blockchains can implement complicated multiparty interactions, such as those associated with medical data exchange, without supplemental peer-to-peer communications. Conclusions: Blockchain-based data marketplaces of the type described, when coupled with data-controlled virtual infrastructure environments (i.e., Medical Data Trusts), provide a viable model for managing the transfer, provenance, and processing of individual health information.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded455    
    Comments [Add]    
    Cited by others 1    

Recommend this journal