Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 185
  • Home
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2022  |  Volume : 8  |  Issue : 1  |  Page : 11

Super-resolution reconstruction of magnetic resonance images based on multi-scale feature extraction Super-Resolution Convolution Neural Network


1 Department of Biomedical Engineering, Nanjing Medical University, Nanjing, Jiangsu, China
2 Department of Biomedical Engineering, Nanjing Medical University; Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China

Correspondence Address:
Wei Wang
Department of Biomedical Engineering, Nanjing Medical University, Nanjing 210000
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/digm.digm_43_21

Rights and Permissions

Background: Low-resolution magnetic resonance imaging (MRI) has high imaging speed, but the image details cannot meet the needs of clinical diagnosis. More and more researchers are interested in neural network-based reconstruction methods. How to effectively process the super-resolution reconstruction of the low-resolution images has become highly valuable in clinical applications. Methods: We introduced Super-Resolution Convolution Neural Network (SRCNN) into the reconstruction of magnetic resonance images. The SRCNN consists of three layers, the image feature extraction layer, the nonlinear mapping layer, and the reconstruction layer. For the feature extraction layer, a multi-scale feature extraction (MFE) method was used to extract the features in different scales by involving three different levels of views, which is superior to the original feature extraction in views with fixed size. Compared with the original feature extraction only in fixed size views, we used three different levels of views to extract the features of different scales. This MFE could also be combined with residual learning to improve the performance of MRI super-resolution reconstruction. The proposed network is an end-to-end architecture. Therefore, no manual intervention or multi-stage calculation is required in practical applications. The structure of the network is extremely simple by omitting the fully connected layers and the pooling layers from traditional Convolution Neural Network. Results and Conclusions: After comparative experiments,the effectiveness of the MFE SRCNN-based network in super-resolution reconstruction of MR images has been greatly improved. The performance is significantly improved in terms of evaluation indexes peak signal-to-noise ratio and structural similarity index measure, and the detail recovery of images is also improved.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed515    
    Printed16    
    Emailed0    
    PDF Downloaded40    
    Comments [Add]    

Recommend this journal